- zweiseitiges Ideal
- двусторонний идеал
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Zweiseitiges Ideal — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia
Ideal (Ringtheorie) — In der abstrakten Algebra ist ein Ideal eines Ringes R eine Teilmenge I, die abgeschlossen bezüglich R Linearkombinationen ist. Die Bezeichnung „Ideal“ ist abgeleitet aus dem Begriff „ideale Zahl“: Ideale können als Verallgemeinerung von Zahlen… … Deutsch Wikipedia
Ideal (Mathematik) — In der abstrakten Algebra ist ein Ideal eine Teilmenge einer algebraischen Struktur mit mindestens einer multiplikativen zweistelligen Operation, die abgeschlossen bezüglich Produkten mit Elementen aus der gesamten Struktur ist. Die Ideale… … Deutsch Wikipedia
Maximales Ideal — ist ein Begriff aus der Algebra. Definition Es sei R ein Ring. Dann heißt ein Ideal maximal, wenn ein maximales Element ist in der durch die (mengentheoretische) Inklusion halbgeordneten Menge aller echten Ideale. D.h. für jedes echte Ideal … Deutsch Wikipedia
X-Ideal — In der abstrakten Algebra ist ein Ideal eine Teilmenge einer algebraischen Struktur mit mindestens einer multiplikativen zweistelligen Operation, die abgeschlossen bezüglich Produkten mit Elementen aus der gesamten Struktur ist. Die Ideale… … Deutsch Wikipedia
Antiliminale C*-Algebra — Liminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Diese C* Algebren werden von manchen Autoren auch CCR Algebren (CCR steht für completely continuous representations, d.h. kompakte Darstellungen) genannt, unter… … Deutsch Wikipedia
C*-Algebra mit stetiger Spur — Liminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Diese C* Algebren werden von manchen Autoren auch CCR Algebren (CCR steht für completely continuous representations, d.h. kompakte Darstellungen) genannt, unter… … Deutsch Wikipedia
CCR-Algebra — Liminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Diese C* Algebren werden von manchen Autoren auch CCR Algebren (CCR steht für completely continuous representations, d.h. kompakte Darstellungen) genannt, unter… … Deutsch Wikipedia
Liminale C*-Algebra — Liminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Hierbei handelt es sich um die Bausteine , aus denen die postliminalen oder Typ I C* Algebren aufgebaut sind. Die liminalen C* Algebren werden von manchen… … Deutsch Wikipedia
Quotientennorm — Quotientenabbildung ist ein Begriff aus der Funktionalanalysis. Quotientenabbildungen sind lineare Abbildungen, die eine bestimmte Faktorraumstruktur erzeugen. Inhaltsverzeichnis 1 Definition 2 Quotientennorm 3 Eigenschaften 4 Lokalkonvexe Räume … Deutsch Wikipedia
GCR-Algebra — Postliminale C* Algebren sind eine in der Mathematik betrachtete Klasse von C* Algebren. Alternative Bezeichnungen, die weiter unten motiviert werden, sind GCR Algebra oder Typ I C* Algebra. Es handelt sich um eine Verallgemeinerung der Klasse… … Deutsch Wikipedia